Primære funksjon: Overføre/bære et bøyemoment
Krav og spesifikasjoner:
Frie variabler:
MÃ¥l:
Utlede objektfunksjon for optimering:
Tar utgangspunkt i kravet til stivhet,
$$\kappa \le \kappa_0 \Rightarrow$$$$\frac{M_0}{EI} \le \kappa_0 \Rightarrow$$$$\frac{12M_0}{Ebh^3} \le \kappa_0 \Rightarrow$$$$\frac{12M_0}{Ea_0h^4} \le \kappa_0 \Rightarrow$$\begin{equation} h \ge \bigg( \frac{12M_0}{Ea_0 \kappa_0} \bigg)^{1/4} \tag{1} \end{equation}Massen er
\begin{equation} m = L_0 b h \rho = L_0 a_0 h^2 \rho \tag{2} \end{equation}Med ligning (1) innsatt i (2)
\begin{equation} m \ge \bigg( \frac{12M_0 L_0^2 a_0}{\kappa_0} \bigg)^{1/2} \bigg( \frac{\rho}{E^{1/2}} \bigg) \tag{3} \end{equation}Minst mulig masse betyr
$$ \min(m) \Rightarrow \min \bigg(\frac{\rho}{E^{1/2}}\bigg) \Rightarrow$$\begin{equation} \max \bigg(\frac{E^{1/2}}{\rho}\bigg) \tag{4} \end{equation}For sirkulært tverrsnitt blir kravet til radius
$$\frac{M_0}{EI} \le \kappa_0 \Rightarrow \frac{4M_0}{E \pi r^4} \le \kappa_0 \Rightarrow r \ge \bigg( \frac{4M_0}{E \pi \kappa_0} \bigg)^{1/4}$$og massen blir
$$ m \ge \bigg( \frac{4M_0 L_0^2 \pi}{\kappa_0} \bigg)^{1/2} \bigg( \frac{\rho}{E^{1/2}} \bigg) $$Fra (4)
$$ \frac{E^{1/2}}{\rho} = k \Rightarrow$$$$\frac{1}{2}\log(E) - \log(\rho) = \log(k) \Rightarrow $$$$\log(E) = 2 \log(\rho) + 2 \log(k)$$Krav og spesifikasjoner:
Frie variabler:
MÃ¥l:
Utlede objektfunksjon for optimering:
Tar utgangspunkt i kravet til styrke,
$$ S_f \cdot \sigma \le \sigma_y \Rightarrow$$$$ S_f \frac{M_0}{I}\frac{h}{2} \le \sigma_y \Rightarrow$$$$ S_f \frac{12M_0}{bh^3}\frac{h}{2} \le \sigma_y \Rightarrow$$$$ S_f \frac{6M_0}{bh^2} \le \sigma_y \Rightarrow$$$$ S_f \frac{6M_0}{a_0 h^3} \le \sigma_y \Rightarrow$$\begin{equation} h \ge \bigg( \frac{6 S_f M_0}{a_0 \sigma_y} \bigg)^{1/3} \tag{5} \end{equation}Massen er
\begin{equation} m = L_0 b h \rho = L_0 a_0 h^2 \rho \tag{6} \end{equation}Med ligning (5) innsatt i (6)
\begin{equation} m \ge \bigg( 6 S_f M_0 L_0^{3/2} a_0^{1/2} \bigg)^{2/3} \bigg( \frac{ \rho}{\sigma_y^{2/3}} \bigg) \tag{7} \end{equation}Minst mulig masse betyr
$$ \min(m) \Rightarrow \min \bigg(\frac{\rho}{\sigma_y^{2/3}}\bigg) \Rightarrow$$\begin{equation} \max \bigg(\frac{\sigma_y^{2/3}}{\rho}\bigg) \tag{8} \end{equation}For sirkulært tverrsnitt blir kravet til radius
$$ S_f \frac{M_0}{I}r \le \sigma_y \Rightarrow S_f \frac{4M_0}{\pi r^4}r\le \sigma_y \Rightarrow S_f \frac{4M_0}{\pi r^3} \le \sigma_y \Rightarrow r \ge \bigg( \frac{4 S_f M_0}{\pi \sigma_y} \bigg)^{1/3}$$og massen blir
$$m \ge \bigg( 4 S_f M_0 L_0^{3/2} \pi^{1/2} \bigg)^{2/3} \bigg( \frac{ \rho}{\sigma_y^{2/3}} \bigg) $$Fra (8)
$$ \frac{\sigma_y^{2/3}}{\rho} = k \Rightarrow$$$$\frac{2}{3}\log(\sigma_y) - \log(\rho) = \log(k) \Rightarrow $$$$\log(\sigma_y) = \frac{3}{2} \log(\rho) + \frac{3}{2} \log(k)$$