Primære funksjon: Overføre/bære et bøyemoment
Krav og spesifikasjoner:
Frie variabler:
MÃ¥l:
Utlede objektfunksjon for optimering:
Tar utgangspunkt i kravet til stivhet,
$$\kappa \le \kappa_0 \Rightarrow$$$$\frac{M_0}{EI} \le \kappa_0 \Rightarrow$$$$\frac{12M_0}{Eb_0h^3} \le \kappa_0 \Rightarrow$$\begin{equation} h \ge \bigg( \frac{12M_0}{E \kappa_0} \bigg)^{1/3} \tag{1} \end{equation}Massen er
\begin{equation} m = L_0 b_0 h \rho \tag{2} \end{equation}Med ligning (1) innsatt i (2)
\begin{equation} m \ge \bigg( \frac{12M_0 L_0^3 b_0^3}{\kappa_0} \bigg)^{1/3} \bigg( \frac{\rho}{E^{1/3}} \bigg) \tag{3} \end{equation}Minst mulig masse betyr
$$ \min(m) \Rightarrow \min \bigg(\frac{\rho}{E^{1/3}}\bigg) \Rightarrow$$\begin{equation} \max \bigg(\frac{E^{1/3}}{\rho}\bigg) \tag{4} \end{equation}Fra (4)
$$ \frac{E^{1/3}}{\rho} = k \Rightarrow$$$$\frac{1}{3}\log(E) - \log(\rho) = \log(k) \Rightarrow $$$$\log(E) = 3 \log(\rho) + 3 \log(k)$$Krav og spesifikasjoner:
Frie variabler:
MÃ¥l:
Utlede objektfunksjon for optimering:
Tar utgangspunkt i kravet til styrke,
$$ S_f \cdot \sigma \le \sigma_y \Rightarrow$$$$ S_f \frac{M_0}{I}\frac{h}{2} \le \sigma_y \Rightarrow$$$$ S_f \frac{12M_0}{b_0 h^3}\frac{h}{2} \le \sigma_y \Rightarrow$$$$ S_f \frac{6M_0}{b_0h^2} \le \sigma_y \Rightarrow$$\begin{equation} h \ge \bigg( \frac{6 S_f M_0}{b_0 \sigma_y} \bigg)^{1/2} \tag{5} \end{equation}Massen er
\begin{equation} m = L_0 b_0 h \rho \tag{6} \end{equation}Med ligning (5) innsatt i (6)
\begin{equation} m \ge \bigg( 6 S_f M_0 L_0^2 b_0 \bigg)^{1/2} \bigg( \frac{ \rho}{\sigma_y^{1/2}} \bigg) \tag{7} \end{equation}Minst mulig masse betyr
$$ \min(m) \Rightarrow \min \bigg(\frac{\rho}{\sigma_y^{1/2}}\bigg) \Rightarrow$$\begin{equation} \max \bigg(\frac{\sigma_y^{1/2}}{\rho}\bigg) \tag{8} \end{equation}Fra (8)
$$ \frac{\sigma_y^{1/2}}{\rho} = k \Rightarrow$$$$\frac{1}{2}\log(\sigma_y) - \log(\rho) = \log(k) \Rightarrow $$$$\log(\sigma_y) = 2 \log(\rho) + 2 \log(k)$$