Thermal expansion

The thermally induced strains $\boldsymbol{\varepsilon}_ {th}$ divided by the change in temperature $\Delta T$ is called the material's coefficients of thermal expansion $\boldsymbol{\alpha}$. A general anisotropic material has six coefficients:

\begin{equation} \boldsymbol{\alpha}= \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_{23} \\ \alpha_{13} \\ \alpha_{12} \end{bmatrix}= \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}_{th} \frac{1}{\Delta T} \tag{1} \end{equation}

Hence, the thermally induced strain is

\begin{equation} \boldsymbol{\varepsilon}_{th}=\boldsymbol{\alpha}\Delta T \tag{2} \end{equation}

The total strain is the sum of thermal strain and mechanical strain:

\begin{equation} \boldsymbol{\varepsilon}=\mathbf{S}\boldsymbol{\sigma} + \boldsymbol{\alpha}\Delta T \tag{3} \end{equation}

Solving for stress:

\begin{equation} \boldsymbol{\sigma} = \mathbf{C}(\boldsymbol{\varepsilon} - \boldsymbol{\alpha}\Delta T ) \tag{4} \end{equation}

Hence, the relations for general anisotropic materials are:

\begin{equation} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix}= \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{45} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}- \Delta T \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_{23} \\ \alpha_{13} \\ \alpha_{12} \end{bmatrix} \end{bmatrix} \tag{5} \end{equation}

Due to the symmetry of orthotropic materials, the coefficients $\alpha_{23},\alpha_{13},\alpha_{12}$ are all zero and the stiffness matrix has only nine independent elastic constants:

\begin{equation} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix}= \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}- \Delta T \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \tag{6} \end{equation}

Example

The temperature is increased by 100$^\circ$C while the total strain is kept zero. Compute the stress for the unidirectional Kevlar-49/Epoxy material read from the Material library.

In [1]:
import matlib
m = matlib.get('Kevlar-49/Epoxy')
display(m)
{'name': 'Kevlar-49/Epoxy',
 'units': 'MPa-mm-Mg',
 'type': 'UD',
 'fiber': 'Kevlar-49',
 'Vf': 0.55,
 'rho': 1.4e-09,
 'description': 'Typical UD Kevlar-49/Epoxy from TMM4175',
 'E1': 73000,
 'E2': 5000,
 'E3': 5000,
 'v12': 0.35,
 'v13': 0.35,
 'v23': 0.45,
 'G12': 2200,
 'G13': 2200,
 'G23': 1700,
 'a1': -1e-06,
 'a2': 5e-05,
 'a3': 5e-05,
 'XT': 1400,
 'YT': 20,
 'ZT': 20,
 'XC': 300,
 'YC': 120,
 'ZC': 120,
 'S12': 40,
 'S13': 40,
 'S23': 20,
 'f12': -0.5,
 'f13': -0.5,
 'f23': -0.5}
In [2]:
import numpy as np
from compositelib import S3D, C3D

C=C3D(m)

dT = 100

strain = np.array([0,0,0,0,0,0])

CTE = np.array([ m['a1'], m['a2'], m['a3'], 0, 0, 0 ])

thermalstrain=dT*CTE

mechanicalstrain=strain-thermalstrain

stress=np.dot(C,mechanicalstrain)

print('Thermally induced stresses:')
print(np.array2string(stress, precision=3, suppress_small=True, separator='  ', floatmode='maxprec') )
Thermally induced stresses:
[-25.29   -46.557  -46.557    0.       0.       0.   ]

Transformation of thermal expansion

Tranformation of the coefficients of thermal expansion is obtained through transformation of thermal strain:

\begin{equation} \boldsymbol{\varepsilon}_{th}=\Delta T \boldsymbol{\alpha} \tag{7} \end{equation}

Transformed thermal strain: \begin{equation} \boldsymbol{\varepsilon}_{th}'= \mathbf{T}_{\varepsilon z}^{-1} \boldsymbol{\varepsilon}_{th} \tag{8} \end{equation}

Substituting :

\begin{equation} \Delta T \boldsymbol{\alpha}'= \mathbf{T}_{\varepsilon z}^{-1} \Delta T \boldsymbol{\alpha} \tag{9} \end{equation}

which yield

\begin{equation} \boldsymbol{\alpha}'= \mathbf{T}_{\varepsilon z}^{-1} \boldsymbol{\alpha} \tag{10} \end{equation}

Example

(Material properties from Material library )

In [3]:
import matlib
cfrp=matlib.get('Carbon/Epoxy(a)')
print(cfrp)
{'name': 'Carbon/Epoxy(a)', 'units': 'MPa-mm-Mg', 'type': 'UD', 'fiber': 'Carbon', 'Vf': 0.55, 'rho': 1.6e-09, 'description': 'Typical low modulus carbon/Epoxy from TMM4175', 'E1': 130000, 'E2': 10000, 'E3': 10000, 'v12': 0.28, 'v13': 0.28, 'v23': 0.5, 'G12': 4500, 'G13': 4500, 'G23': 3500, 'a1': -5e-07, 'a2': 3e-05, 'a3': 3e-05, 'XT': 1800, 'YT': 40, 'ZT': 40, 'XC': 1200, 'YC': 180, 'ZC': 180, 'S12': 70, 'S13': 70, 'S23': 40, 'f12': -0.5, 'f13': -0.5, 'f23': -0.5}
In [4]:
import numpy as np

def T3Dez(angle):
    a=np.radians(angle)
    c=np.cos(a)
    s=np.sin(a)
    return    np.array([[ c*c ,  s*s ,  0.0 , 0.0 , 0.0  ,    c*s ],
                        [ s*s ,  c*c ,  0.0 , 0.0 , 0.0  ,   -c*s ],
                        [ 0.0 ,  0.0 ,  1.0 , 0.0 , 0.0  ,    0.0 ],
                        [ 0.0 ,  0.0 ,  0.0 ,   c ,  -s  ,    0.0 ],
                        [ 0.0 ,  0.0 ,  0.0 ,   s ,   c  ,    0.0 ],
                        [-2*c*s, 2*c*s, 0.0 , 0.0 , 0.0  ,c*c-s*s ]],
                        float)

alpha123=np.array( [cfrp['a1'], cfrp['a2'], cfrp['a3'], 0, 0, 0 ] )
alphaxyz= np.dot(  np.linalg.inv(T3Dez(30))  ,  alpha123)

for a in alphaxyz:
    print('{0:0.4e}'.format(a))
7.1250e-06
2.2375e-05
3.0000e-05
0.0000e+00
0.0000e+00
-2.6414e-05
TOC Next Prev

Disclaimer:This site is designed for educational purposes only. There are most likely errors, mistakes, typos, and poorly crafted statements that are not detected yet... www.ntnu.edu/employees/nils.p.vedvik

Copyright 2024, All rights reserved