The laminate theory connects in-plane forces $\mathbf{N}$ and moments $\mathbf{M}$ to midplane strains $\boldsymbol{\varepsilon^0}$ and kurvatures $\boldsymbol{\kappa}$ by a set of linear relations:
$$ \begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix}= \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon^0} \\ \boldsymbol{\kappa} \end{bmatrix} $$The relations will be derived from the previously established theories and assumptions.
The Kirchhoff assumption implies that the displacements at a position $z$ through the thickness are related to the midplane displacements and rotations expressed by:
\begin{equation} \begin{aligned} &u(x,y,z) = u_0(x,y)-z \frac{\partial w_0}{\partial x} \\ &v(x,y,z) = v_0(x,y)-z \frac{\partial w_0}{\partial y} \\ &w(x,y)=w_0(x,y) \end{aligned} \tag{1} \end{equation}where $u$, $v$ and $w$ are the displacements in $x$, $y$ and $z$ directions respectively, and $u_0$, $v_0$ and $w_0$ are the displacements of the reference plane.
From the strain-displacement relations;
\begin{equation} \begin{aligned} &\varepsilon_x = \frac{\partial u}{\partial x} =\frac{\partial u_0}{\partial x} - z \frac{\partial^2 w_0}{\partial x^2} = \varepsilon_x^0 + z \kappa_x \\ &\varepsilon_y = \frac{\partial v}{\partial y} =\frac{\partial v_0}{\partial y} - z \frac{\partial^2 w_0}{\partial y^2} = \varepsilon_y^0 + z \kappa_y \\ &\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} =\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} - 2z \frac{\partial^2 w_0}{\partial x \partial y} = \gamma_{xy}^0 + z \kappa_{xy} \end{aligned} \tag{2} \end{equation}where $\varepsilon_x^0$, $\varepsilon_y^0$ and $\gamma_{xy}^0$ are mid-plane strains and $\kappa_x$, $\kappa_y$ and $\kappa_{xy}$ are curvatures given by
\begin{equation} \kappa_x=-\frac{\partial^2 w}{\partial x^2}, \quad \kappa_y=-\frac{\partial^2 w}{\partial y^2}, \quad \kappa_{xy}=-2\frac{\partial^2 w}{\partial x \partial y} \tag{3} \end{equation}The relations can now be summarized using matrix form as
\begin{equation} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix}= \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix}+z \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \tag{4} \end{equation}or the short notation
\begin{equation} \boldsymbol{\varepsilon}' = \boldsymbol{\varepsilon}^0 + z \boldsymbol{\kappa} \tag{5} \end{equation}Note that
$$\varepsilon_{z} = \frac{\partial w}{\partial z} = \frac{\partial w_0}{\partial z} = 0$$$$\gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \frac{\partial u_0}{\partial z} + \frac{\partial w_0}{\partial x} = 0$$$$\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \frac{\partial v_0}{\partial z} + \frac{\partial w_0}{\partial y} = 0$$Illustrating the curvatures:
The curvatures can be visualized by superposing the resulting out-of-plane displacement $w$ given by the contributions from $\kappa_x$, $\kappa_y$ and $\kappa_{xy}$:
$$ \frac{\partial^2 w}{\partial x^2} = -\kappa_x \Rightarrow \frac{\partial w}{\partial x} = -\kappa_x x + c_1 \Rightarrow w=-\frac{1}{2}\kappa_x x^2 + c_1 x + c_2 $$The boundary conditions $w(x=0) = 0$ and $\frac{\partial}{\partial x}w(x=0)$ leads to
$$ w=-\frac{1}{2}\kappa_x x^2 $$Correspondingly, the contribution from the curvature $\kappa_y$ when we assume that $\frac{\partial}{\partial y}w(x=0)$ is
$$ w=-\frac{1}{2}\kappa_y y^2 $$For $\kappa_{xy}$:
$$ \frac{\partial^2 w}{\partial x \partial y} = -\frac{1}{2}\kappa_{xy} \Rightarrow \frac{\partial w}{\partial y} = -\frac{1}{2} \kappa_{xy} x + c_5 \Rightarrow w=-\frac{1}{2}\kappa_{xy} x y + c_5 y + c_4 $$The boundary conditions $w(x=0) = 0$, $\frac{\partial}{\partial x}w(x=0)$ and $\frac{\partial}{\partial y}w(x=0)$ gives
$$ w=-\frac{1}{2}\kappa_{xy} x y $$Finally;
\begin{equation} w(x,y) = -\frac{1}{2}\kappa_x x^2 -\frac{1}{2}\kappa_y y^2 -\frac{1}{2} \kappa_{xy} x y \tag{6} \end{equation}Implementation and examples:
def illustrateCurvatures(Kx,Ky,Kxy):
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
#ax = fig.gca(projection='3d')
ax = fig.gca()
# Make data.
X = np.arange(-0.5, 0.6, 0.1)
Y = np.arange(-0.5, 0.6, 0.1)
X, Y = np.meshgrid(X, Y)
Z1 = (- Kx*X**2 - Ky*Y**2 - Kxy*X*Y)/2
surf1 = ax.plot_surface(X, Y, Z1, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
%matplotlib inline
illustrateCurvatures(Kx=0.5, Ky=0.0, Kxy=0.0)
%matplotlib inline
illustrateCurvatures(Kx=-0.5, Ky=0.5, Kxy=0.0)
%matplotlib inline
illustrateCurvatures(Kx=0.0, Ky=0.0, Kxy=-0.25)
%matplotlib inline
illustrateCurvatures(Kx=0.0, Ky=0.25, Kxy=0.5)
Due to the discontinuous variation of stresses from layer to layer, we will conveniently consider the integrated effect of the stresses on the laminate. The laminate loads acting on a laminate are the in-plane forces $N_x$, $N_y$ and $N_{xy}$, and the moments $M_x$, $M_y$ and $M_{xy}$ as illustrated in Figure-1.
Figure-1: Laminate loads
The in-plane forces per unit length on individual layers are \begin{equation} N_{x,k}=\int_{h_{k-1}}^{h_k} \sigma_x dz, \quad N_{y,k}=\int_{h_{k-1}}^{h_k} \sigma_y dz, \quad N_{xy,k}=\int_{h_{k-1}}^{h_k} \tau_{xy} dz \tag{7} \end{equation}
Figure-2: Force per unit length of a single layer
The resultant forces per unit length on the laminate is the sum of contributions from all layers:
\begin{equation} N_{x}=\sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \sigma_x dz, \quad N_{y}=\sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \sigma_y dz, \quad N_{xy}=\sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \tau_{xy} dz \tag{8} \end{equation}Equation (8) can be expressed in matrix form as
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} dz \tag{9} \end{equation}The stresses can now be expressed through Hooke's law for the plane stress case:
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} dz \tag{10} \end{equation}Recall that the strain at a position $z$ is
\begin{equation} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix}= \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix}+z \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \tag{11} \end{equation}Substituting (11) into (10) yields:
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} dz + \sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} z dz \tag{12} \end{equation}Since the stiffness matrix, mid-plane strains and curvatures do not vary through the thickness of a layer, equation (12) can be rearranged to
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} \int_{h_{k-1}}^{h_k} dz + \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \int_{h_{k-1}}^{h_k} z dz \tag{13} \end{equation}Performing the integrations,
\begin{equation} \int_{h_{k-1}}^{h_k} dz = h_k - h_{k-1}, \quad \int_{h_{k-1}}^{h_k}z dz = \frac{1}{2}(h_k^2 - h_{k-1}^2) \tag{14} \end{equation}such that equation (13) can written as
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} (h_k - h_{k-1}) + \frac{1}{2} \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} (h_k^2 - h_{k-1}^2) \tag{15} \end{equation}Now defining
\begin{equation} \begin{bmatrix} A_{xx} & A_{xy} & A_{xs} \\ A_{xy} & A_{yy} & A_{ys} \\ A_{xs} & A_{ys} & A_{ss} \end{bmatrix}= \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k (h_k - h_{k-1}) \tag{16} \end{equation}and
\begin{equation} \begin{bmatrix} B_{xx} & B_{xy} & B_{xs} \\ B_{xy} & B_{yy} & B_{ys} \\ B_{xs} & B_{ys} & B_{ss} \end{bmatrix} = \frac{1}{2} \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k (h_k^2 - h_{k-1}^2) \tag{17} \end{equation}and finally equation (15) becomes
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{xx} & A_{xy} & A_{xs} \\ A_{xy} & A_{yy} & A_{ys} \\ A_{xs} & A_{ys} & A_{ss} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix}+ \begin{bmatrix} B_{xx} & B_{xy} & B_{xs} \\ B_{xy} & B_{yy} & B_{ys} \\ B_{xs} & B_{ys} & B_{ss} \end{bmatrix} \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \tag{18} \end{equation}Correspondingly, resultant moments per unit length are:
\begin{equation} \begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}z dz \tag{19} \end{equation}Substitution and integration leads to
\begin{equation} \begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{xx} & B_{xy} & B_{xs} \\ B_{xy} & B_{yy} & B_{ys} \\ B_{xs} & B_{ys} & B_{ss} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix}+ \begin{bmatrix} D_{xx} & D_{xy} & D_{xs} \\ D_{xy} & D_{yy} & D_{ys} \\ D_{xs} & D_{ys} & D_{ss} \end{bmatrix} \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \tag{20} \end{equation}where
\begin{equation} \begin{bmatrix} D_{xx} & D_{xy} & D_{xs} \\ D_{xy} & D_{yy} & D_{ys} \\ D_{xs} & D_{ys} & D_{ss} \end{bmatrix} = \frac{1}{3} \sum_{k=1}^{n} \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{bmatrix}_k (h_k^3 - h_{k-1}^3) \tag{21} \end{equation}Equations (18) and (20) can now be combined into
\begin{equation} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \\ M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{xx} & A_{xy} & A_{xs} & B_{xx} & B_{xy} & B_{xs} \\ A_{xy} & A_{yy} & A_{ys} & B_{xy} & B_{yy} & B_{ys} \\ A_{xs} & A_{ys} & A_{ss} & B_{xs} & B_{ys} & B_{ss} \\ B_{xx} & B_{xy} & B_{xs} & D_{xx} & D_{xy} & D_{xs} \\ B_{xy} & B_{yy} & B_{ys} & D_{xy} & D_{yy} & D_{ys} \\ B_{xs} & B_{ys} & B_{ss} & D_{xs} & D_{ys} & D_{ss} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \\ \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \tag{22} \end{equation}Force resultants: $$ \mathbf{N} = \sum_{k=1}^{n} \int_{h_{k-1}}^h \boldsymbol{\sigma}'dz = \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k\boldsymbol{\varepsilon}'dz = \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k(\boldsymbol{\varepsilon}^0 + z \boldsymbol{\kappa})dz = \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k\boldsymbol{\varepsilon}^0 dz+ \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k\boldsymbol{\kappa}zdz = \\ \Big[ \sum_{k=1}^{n} \mathbf{Q}'_k (h_k-h_{k-1}) \Big] \boldsymbol{\varepsilon}^0 + \Big[\frac{1}{2}\sum_{k=1}^{n} \mathbf{Q}'_k(h_k^2-h_{k-1}^2 \Big] \boldsymbol{\kappa} \Rightarrow \\ \mathbf{N} = \mathbf{A} \boldsymbol{\varepsilon}^0+\mathbf{B} \boldsymbol{\kappa} $$
Moment resultants:
$$ \mathbf{M} = \sum_{k=1}^{n} \int_{h_{k-1}}^h \boldsymbol{\sigma}'zdz = \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k\boldsymbol{\varepsilon}'zdz = \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k(\boldsymbol{\varepsilon}^0 + z \boldsymbol{\kappa})zdz = \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k\boldsymbol{\varepsilon}^0 z dz+ \sum_{k=1}^{n} \int_{h_{k-1}}^h \mathbf{Q}'_k\boldsymbol{\kappa}z^2 dz = \\ \Big[\frac{1}{2}\sum_{k=1}^{n} \mathbf{Q}'_k (h_k^2-h_{k-1}^2) \Big] \boldsymbol{\varepsilon}^0 + \Big[\frac{1}{3}\sum_{k=1}^{n} \mathbf{Q}'_k(h_k^3-h_{k-1}^3 )\Big] \boldsymbol{\kappa} \Rightarrow \\ \mathbf{M} = \mathbf{B} \boldsymbol{\varepsilon}^0+\mathbf{D} \boldsymbol{\kappa} $$where
\begin{equation} \begin{aligned} &\mathbf{A} = \sum_{k=1}^{n} \mathbf{Q}'_k (h_k-h_{k-1}) \\ &\mathbf{B} = \frac{1}{2}\sum_{k=1}^{n} \mathbf{Q}'_k (h_k^2-h_{k-1}^2) \\ &\mathbf{D} = \frac{1}{3}\sum_{k=1}^{n} \mathbf{Q}'_k (h_k^3-h_{k-1}^3) \end{aligned} \tag{23} \end{equation}Finally,
\begin{equation} \begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix}= \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon^0} \\ \boldsymbol{\kappa} \end{bmatrix} \tag{24} \end{equation}